题目描述
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
样例
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
算法1
DP $O(m x n)$
C++ 代码
// d[i][j] : w1的前i个char convert to w2的前j个char 的distance
// 为了 索引 word 方便, w1 = " " + w1, w2 = " " + w2;
// if w1[i] == w2[j]: d[i][j] = 0;
// else: d[i][j] = 1 + min { d[i][j-1], d[i-1][j], d[i-1][j-1] }
// init: d[i][0] = i, d[0][j] = j
int minDistance(string word1, string word2) {
string w1 = " " + word1, w2 = " " + word2;
int m = w1.size(), n = w2.size();
vector<vector<int>> d(m, vector<int>(n, INT_MAX));
for(int i=0; i<m; i++) { d[i][0] = i; }
for(int j=0; j<n; j++) { d[0][j] = j; }
for(int i=1; i<m; i++) {
for(int j=1; j<n; j++) {
if(w1[i] == w2[j]) { d[i][j] = d[i-1][j-1]; }
else { d[i][j] = 1+ min( min( d[i][j-1], d[i-1][j] ), d[i-1][j-1] ); }
}
}
return d[m-1][n-1];
}