题目描述
新年快到了,“猪头帮协会”准备搞一个聚会,已经知道现有会员N人,把会员从1到N编号,其中会长的号码是N号,凡是和会长是老朋友的,那么该会员的号码肯定和N有大于1的公约数,否则都是新朋友,现在会长想知道究竟有几个新朋友?请你编程序帮会长计算出来。
第一行是测试数据的组数CN(Case number,1<CN<10000),接着有CN行正整数N(1<n<32768),表示会员人数。
对于每一个N,输出一行新朋友的人数,这样共有CN行输出。
样例
2
25608
24027
7680
16016
算法
欧拉函数介绍:
欧拉函数,在数论中用于求解 [ 1 , n ] 中与 n 互质数个数 的函数,因为研究者为欧拉,故命名为欧拉函数。
通式:φ(x) = x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。
φ(1) = 1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如 12 = 2*2*3 那么 φ(12) = 12 * (1-1/2) * (1-1/3)=4 )
若 n = p^k ( p为 质数 ),则 φ(n) = p^k-p^(k-1) = (p-1)p^(k-1),( 除 p 的倍数外,其他数均为 p 的互质数 )。
若n = p( p 为质数),则 φ(n) = p-p^(1-1) = p-1。
欧拉函数性质:
1、 φ(mn) = φ(m) φ(n)
2、若n为奇数,φ(2n) = φ(n)。
(注意:在欧拉函数中,函数值是 [ 1 , n ] 中与 n 互质数个数 ,证明自行百度)
参考文献
详细请看链接的y总讲解
视频讲解:https://www.acwing.com/video/298/
C++ 代码
#include <iostream>
#include <cmath>
using namespace std;
int phi(int x) {
int res = x;
for (int i = 2; i <= x / i; i ++ )
if (x % i == 0) {
res = res / i * (i - 1);
while (x % i == 0) x /= i;
}
if (x > 1) res = res / x * (x - 1);
return res;
}
int main() {
int T,N;
cin >> T;
while( T-- && cin >> N) {
cout << phi(N) << endl;
}
return 0;
}