题目描述
A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.
For example, [1,7,4,9,2,5]
is a wiggle sequence because the differences (6,-3,5,-7,3)
are alternately positive and negative. In contrast, [1,4,7,2,5]
and [1,7,4,5,5]
are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.
Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.
Example 1:
Input: [1,7,4,9,2,5]
Output: 6
Explanation: The entire sequence is a wiggle sequence.
Example 2:
Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7
Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].
Example 3:
Input: [1,2,3,4,5,6,7,8,9]
Output: 2
题意:如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
算法1
(贪心) O(n)
题解1:贪心。摆动序列如果画在坐标轴上的时候,它的形式其实就是向山峰一样,把所有的山顶(极大值)和山谷(极小值)元素拿出来就是一个最优解。
所以我们只需要找出所有的山顶和山谷就可以了(A,D,E,G,H,I)。
我们使用cur_type
来标记上一个元素的状态,如果cur_type > 0
,说明上一个元素的状态是上升,否则是下降,初始值为0。res
标记当前答案是多少,初始值为1。我们从前往后遍历数组,把当前数字和上一个元素进行比较:
如果当前元素大于上一个元素,并且上一个元素的状态是下降,那么说明我们找到了一个山谷(极小值),那么更新答案和变化状态。
如果当前元素小于上一个元素,并且上一个元素的状态是上升,那么说明我们找到了一个山顶(极大值),那么更新答案和变化状态。
如果当前元素等于上一个元素,那么我们什么都不用做。
int wiggleMaxLength(vector<int>& nums) {
int n = nums.size(),res = 1,cur_type = 0;
if(n < 2) return n;
for(int i = 1 ; i < n ; i ++)
{
if(nums[i] > nums[i - 1] && cur_type <= 0)
{
cur_type = 1;
res ++;
}else if(nums[i] < nums[i - 1] && cur_type >= 0)
{
cur_type = -1;
res ++;
}
}
return res;
}
算法2
(动态规划) O(n)
题解2:动态规划。我们使用两个数组来分别表示前i
个元素且最后一个状态是上升/下降的最长摆动序列长度。
状态表示:dp_up[i]
代表前i
个元素且最后一个状态是上升的最长摆动序列长度;dp_down[i]
代表前i
个元素且最后一个状态是下降的最长摆动序列长度。
状态初始化:dp_up[0] = dp_down[0] = 1
,代表仅有一个元素时候的情况。
状态转移:如果nums[i] > nums[i - 1]
,那么dp_up[i] = dp_down[i - 1] + 1
,说明发生了一次由下降到上升的转折;如果nums[i] < nums[i - ]
,那么dp_down[i] = dp_up[i - 1] + 1
,说明发生了一次由上升到下降的转折。其余情况只要简单的和上一个状态一样即可。
答案表示:max(dp_up[n - 1],dp_down[n - 1])
,分别代表最后一个状态是上升还是下降的最长摆动序列。
int wiggleMaxLength(vector<int>& nums) {
int n = nums.size();
if(n < 2) return n;
int dp_up[n] = {1},dp_down[n] = {1};
for(int i = 1 ; i < n ; i ++)
{
if(nums[i] > nums[i - 1])
{
dp_up[i] = dp_down[i - 1] + 1;
dp_down[i] = dp_down[i - 1];
}else if(nums[i] < nums[i - 1])
{
dp_down[i] = dp_up[i - 1] + 1;
dp_up[i] = dp_up[i - 1];
}else
{
dp_down[i] = dp_down[i - 1];
dp_up[i] = dp_up[i - 1];
}
}
return max(dp_down[n - 1],dp_up[n - 1]);
}
算法2用二维数组可以省些代码量
class Solution { public: int wiggleMaxLength(vector<int>& nums) { if (nums.empty()) return 0; int n = nums.size(); vector<vector<int>> dp(n+1, vector<int> (2, 1)); dp[0][1] = dp[0][0] = 1; for (int i = 1; i<n; i++){ dp[i][0] = dp[i-1][0]; dp[i][1] = dp[i-1][1]; if (nums[i] > nums[i-1]) dp[i][1] = max(dp[i][1], dp[i-1][0] + 1); else if (nums[i] < nums[i-1]) dp[i][0] = max(dp[i][0], dp[i-1][1] + 1); } return max(dp[n-1][0], dp[n-1][1]); } };