对每个 $\forall \ A_i$,考虑从高位到低位,$\forall \ i \in [\text{highbit} \to \text{lowbit}]$
要找到这样的一个 $A_j$,满足 $A_j$ 尽可能多的高位与 $A_i$ 不同,这样异或的高位就有尽可能多的 $1$
-
将所有数按位插入 $\text{trie}$ 中,$p = 1$ 初始化为根节点
-
遍历每个 $A_i$,$i \in [\text{highbit} \to \text{lowbit}]$ 检查每一位
-
如果 $\text{trie}(p, !i) \neq 0$,那么顺着 $\text{trie}(p, !i)$ 走
并且 $res += (1 << i)$ -
否则沿着 $\text{trie}(p, i)$ 走
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <stack>
#include <map>
#include <set>
#include <sstream>
#include <iomanip>
#include <cmath>
#include <bitset>
#include <assert.h>
#include <unordered_map>
using namespace std;
typedef long long ll;
#define Cmp(a, b) memcmp(a, b, sizeof(b))
#define Cpy(a, b) memcpy(a, b, sizeof(b))
#define Set(a, v) memset(a, v, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define _forS(i, l, r) for(set<int>::iterator i = (l); i != (r); i++)
#define _rep(i, l, r) for(int i = (l); i <= (r); i++)
#define _for(i, l, r) for(int i = (l); i < (r); i++)
#define _forDown(i, l, r) for(int i = (l); i >= r; i--)
#define debug_(ch, i) printf(#ch"[%d]: %d\n", i, ch[i])
#define debug_m(mp, p) printf(#mp"[%d]: %d\n", p->first, p->second)
#define debugS(str) cout << "dbg: " << str << endl;
#define debugArr(arr, x, y) _for(i, 0, x) { _for(j, 0, y) printf("%c", arr[i][j]); printf("\n"); }
#define _forPlus(i, l, d, r) for(int i = (l); i + d < (r); i++)
#define lowbit(i) (i & (-i))
#define MPR(a, b) make_pair(a, b)
pair<int, int> crack(int n) {
int st = sqrt(n);
int fac = n / st;
while (n % st) {
st += 1;
fac = n / st;
}
return make_pair(st, fac);
}
inline ll qpow(ll a, int n) {
ll ans = 1;
for(; n; n >>= 1) {
if(n & 1) ans *= 1ll * a;
a *= a;
}
return ans;
}
template <class T>
inline bool chmax(T& a, T b) {
if(a < b) {
a = b;
return true;
}
return false;
}
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}
ll ksc(ll a, ll b, ll mod) {
ll ans = 0;
for(; b; b >>= 1) {
if (b & 1) ans = (ans + a) % mod;
a = (a * 2) % mod;
}
return ans;
}
ll ksm(ll a, ll b, ll mod) {
ll ans = 1 % mod;
a %= mod;
for(; b; b >>= 1) {
if (b & 1) ans = ksc(ans, a, mod);
a = ksc(a, a, mod);
}
return ans;
}
template <class T>
inline bool chmin(T& a, T b) {
if(a > b) {
a = b;
return true;
}
return false;
}
template<class T>
bool lexSmaller(vector<T> a, vector<T> b) {
int n = a.size(), m = b.size();
int i;
for(i = 0; i < n && i < m; i++) {
if (a[i] < b[i]) return true;
else if (b[i] < a[i]) return false;
}
return (i == n && i < m);
}
// ============================================================== //
const int maxn = 3100000 + 5;
const int N = 1e5 + 5;
int n, a[N];
class Trie {
public:
int tot;
int t[maxn][2];
Trie() {
tot = 1;
memset(t, 0, sizeof t);
}
void insert(int x) {
int p = 1;
for (int i = 30; i >= 0; i--) {
int c = (x >> i & 1);
if (t[p][c] == 0) t[p][c] = ++tot;
p = t[p][c];
}
}
int query(int x) {
int res = 0, p = 1;
for (int i = 30; i >= 0; i--) {
int c = x >> i & 1;
if (t[p][!c]) {
res += (1<<i);
p = t[p][!c];
}
else p = t[p][c];
}
return res;
}
};
Trie trie;
int main() {
freopen("input.txt", "r", stdin);
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &a[i]);
trie.insert(a[i]);
}
int res = 0;
for (int i = 0; i < n; i++) res = max(res, trie.query(a[i]));
printf("%d\n", res);
}