首先 ansi 的答案可以从 ansi+1 累加过来,因此我们考虑相似度恰好为 i 对答案的贡献。
相当于两个后缀 a,b 的 LCP 长度恰好为 i,即 [rka,rkb] 的 min 必须恰好等于 i。
这玩意儿很难做,但是我们可以考虑从大到小加入 Height。
这样转化的巧妙之处在于 \lt i 的 height 都没有被加入,因此不会影响统计。
那么加入一个 height 相当于是合并两个连通块,同时还要维护连通块的 \max,\min,siz。
#include <bits/stdc++.h>
#define PLL pair<long long, long long>
using namespace std;
const int N = 6e5 + 5;
const long long INF = 1e18;
int n, a[N];
char s[N];
int sa[N], rk[N], cnt[N], x[N << 1], y[N << 1];
void init_SA() {
int v = 128;
for (int i = 0; i <= v; i++) cnt[i] = 0;
for (int i = 1; i <= n; i++) cnt[x[i] = s[i]]++;
for (int i = 1; i <= v; i++) cnt[i] += cnt[i - 1];
for (int i = n; i >= 1; i--) sa[ cnt[x[i]]-- ] = i;
for (int len = 1; ; len <<= 1) {
int tot = 0;
for (int i = n - len + 1; i <= n; i++) y[++tot] = i;
for (int i = 1; i <= n; i++)
if (sa[i] > len) y[++tot] = sa[i] - len;
for (int i = 0; i <= v; i++) cnt[i] = 0;
for (int i = 1; i <= n; i++) cnt[x[i]]++;
for (int i = 1; i <= v; i++) cnt[i] += cnt[i - 1];
for (int i = n; i >= 1; i--) sa[ cnt[x[y[i]]]-- ] = y[i], y[i] = 0;
swap(x, y), tot = 0;
for (int i = 1; i <= n; i++)
if (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + len] == y[sa[i - 1] + len]) x[sa[i]] = tot;
else x[sa[i]] = ++tot;
v = tot;
if (v == n) break;
}
}
int ht[N];
void init_height() {
for (int i = 1; i <= n; i++) rk[sa[i]] = i;
for (int i = 1, j = 0, now = 0; i <= n; i++) {
if (rk[i] == 1) { ht[rk[i]] = 0; continue; }
j = sa[rk[i] - 1], now = max(0, now - 1);
while (i + now <= n && j + now <= n && s[i + now] == s[j + now]) now++;
ht[rk[i]] = now;
}
}
int p[N], id[N], mx[N], mn[N], sz[N];
bool cmp(int a, int b) { return ht[a] > ht[b]; }
int find(int x) { return (p[x] == x) ? x : p[x] = find(p[x]); }
long long get(int x) { return x * 1ll * (x - 1) / 2; }
PLL merge(int x, int y) {
x = find(x), y = find(y);
long long res1 = get(sz[x] + sz[y]) - get(sz[x]) - get(sz[y]), res2 = max(mn[x] * 1ll * mn[y], mx[x] * 1ll * mx[y]);
p[x] = y, mx[y] = max(mx[x], mx[y]), mn[y] = min(mn[x], mn[y]), sz[y] += sz[x];
return make_pair(res1, res2);
}
long long ans1[N], ans2[N];
void clr() {
for (int i = 0; i <= n; i++) sa[i] = rk[i] = ht[i] = 0, ans1[i] = 0ll, ans2[i] = -INF;
for (int i = 0; i <= n * 2; i++) x[i] = y[i] = 0;
}
void solve() {
for (int i = 1; i <= n; i++) p[i] = i, sz[i] = 1, mx[i] = mn[i] = a[sa[i]];
for (int i = 1; i <= n; i++) id[i] = i;
sort(id + 1, id + 1 + n, cmp);
for (int i = 1; i <= n; i++) {
int x = id[i];
PLL res;
if (x > 1 && (find(x) ^ find(x - 1)) ) res = merge(x - 1, x), ans1[ht[x]] += res.first, ans2[ht[x]] = max(ans2[ht[x]], res.second);
}
for (int i = n - 1; i >= 0; i--) ans1[i] += ans1[i + 1], ans2[i] = max(ans2[i], ans2[i + 1]);
for (int i = 0; i < n; i++) printf("%lld %lld\n", ans1[i], (ans1[i] == 0) ? 0ll : ans2[i]);
}
int main() {
scanf("%d\n %s\n ", &n, s + 1);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
clr();
init_SA(), init_height();
solve();
return 0;
}