题目描述
blablabla
样例
//递归分割
#include <iostream>
using namespace std;
const int N = 1000010;
int n;
int q[N], tmp[N];
//tmp[]暂时存储左右两个子列合成后的新子列,而后还需重新赋值给q[]
void merge_sort(int q[], int l, int r)
{
if (l >= r) return;
int mid = l + r >> 1;//偏左
merge_sort(q, l, mid), merge_sort(q, mid + 1, r); //先通过递归保证左右两子列已完成顺序排列
int k = 0, i = l, j = mid + 1; //i为左子列开始处,j为右子列开始处
while (i <= mid && j <= r) // 当有一方不符合条件时,退出循环,然后循环有剩余项的子列
if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
else tmp[k ++ ] = q[j ++ ];
while (i <= mid) tmp[k ++ ] = q[i ++ ]; //左子列剩余
while (j <= r) tmp[k ++ ] = q[j ++ ]; //右子列剩余
//新合并子列tmp[]需从暂始起点l依次赋值给q[]到r结束
for (i = l,j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j]; //i从l到r,j从0到末
}
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d", &q[i]);
merge_sort(q, 0, n - 1);
for (int i = 0; i < n; i ++ ) printf("%d ", q[i]);
return 0;
}
算法1
(暴力枚举) O(n2)
blablabla
时间复杂度
参考文献
C++ 代码
blablabla
算法2
(暴力枚举) O(n2)
blablabla
时间复杂度
参考文献
C++ 代码
blablabla