宣传一下算法提高课整理 <—
CSDN个人主页:更好的阅读体验 <—
本题链接(AcWing)
点这里
题目描述
有 $N$ 种物品和一个容量是 $V$ 的背包。
第 $i$ 种物品最多有 $s_i$ 件,每件体积是 $v_i$,价值是 $w_i$。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,$N,V$ $(0 \lt N \le 1000$, $0 \lt V \le 20000)$,用空格隔开,分别表示物品种数和背包容积。
接下来有 $N$ 行,每行三个整数 $v_i, w_i, s_i$,用空格隔开,分别表示第 $i$ 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
$0 \lt N \le 1000$
$0 \lt V \le 20000$
$0 \lt v_i, w_i, s_i \le 20000$
提示
本题考查多重背包的单调队列优化方法。
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
思路
本题为DP问题,可以使用闫氏DP分析法解题。
DP:
dp[i][j] 表示将前 i 种物品放入容量为 j 的背包中所得到的最大价值
dp[i][j] = max(不放入物品 i,放入1个物品 i,放入2个物品 i, ... , 放入k个物品 i)
这里 k 要满足:k <= s, j - k*v >= 0
不放物品 i = dp[i-1][j]
放k个物品 i = dp[i-1][j - k*v] + k*w
dp[i][j] = max(dp[i-1][j], dp[i-1][j-v] + w, dp[i-1][j-2*v] + 2*w,..., dp[i-1][j-k*v] + k*w)
实际上我们并不需要二维的dp数组,适当的调整循环条件,我们可以重复利用dp数组来保存上一轮的信息
我们令 dp[j] 表示容量为j的情况下,获得的最大价值
那么,针对每一类物品 i ,我们都更新一下 dp[m] --> dp[0] 的值,最后 dp[m] 就是一个全局最优值
dp[m] = max(dp[m], dp[m-v] + w, dp[m-2*v] + 2*w, dp[m-3*v] + 3*w, ...)
接下来,我们把 dp[0] --> dp[m] 写成下面这种形式
dp[0], dp[v], dp[2*v], dp[3*v], ... , dp[k*v]
dp[1], dp[v+1], dp[2*v+1], dp[3*v+1], ... , dp[k*v+1]
dp[2], dp[v+2], dp[2*v+2], dp[3*v+2], ... , dp[k*v+2]
...
dp[j], dp[v+j], dp[2*v+j], dp[3*v+j], ... , dp[k*v+j]
显而易见,m 一定等于 k*v + j,其中 0 <= j < v
所以,我们可以把 dp 数组分成 j 个类,每一类中的值,都是在同类之间转换得到的
也就是说,dp[k*v+j] 只依赖于 { dp[j], dp[v+j], dp[2*v+j], dp[3*v+j], ... , dp[k*v+j] }
因为我们需要的是{ dp[j], dp[v+j], dp[2*v+j], dp[3*v+j], ... , dp[k*v+j] } 中的最大值,
可以通过维护一个单调队列来得到结果。这样的话,问题就变成了 j 个单调队列的问题
所以,我们可以得到
dp[j] = dp[j]
dp[j+v] = max(dp[j] + w, dp[j+v])
dp[j+2v] = max(dp[j] + 2w, dp[j+v] + w, dp[j+2v])
dp[j+3v] = max(dp[j] + 3w, dp[j+v] + 2w, dp[j+2v] + w, dp[j+3v])
...
但是,这个队列中前面的数,每次都会增加一个 w ,所以我们需要做一些转换
dp[j] = dp[j]
dp[j+v] = max(dp[j], dp[j+v] - w) + w
dp[j+2v] = max(dp[j], dp[j+v] - w, dp[j+2v] - 2w) + 2w
dp[j+3v] = max(dp[j], dp[j+v] - w, dp[j+2v] - 2w, dp[j+3v] - 3w) + 3w
...
这样,每次入队的值是 dp[j+k*v] - k*w
单调队列问题,最重要的两点
1)维护队列元素的个数,如果不能继续入队,弹出队头元素
2)维护队列的单调性,即:尾值 >= dp[j + k*v] - k*w
本题中,队列中元素的个数应该为 s+1 个,即 0 -- s 个物品 i
$AC$ $Code$:
$C++$
#include <iostream>
#include <cstring>
using namespace std;
const int N = 20010;
int n, m;
int f[N], g[N], q[N];
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i ++ )
{
int v, w, s;
cin >> v >> w >> s;
memcpy(g, f, sizeof(f));
for (int j = 0; j < v; j ++ )
{
int hh = 0, tt = -1;
for (int k = j; k <= m; k += v)
{
if (hh <= tt && q[hh] < k - s * v) hh ++ ;
if (hh <= tt) f[k] = max(f[k], g[q[hh]] + (k - q[hh]) / v * w);
while (hh <= tt && g[q[tt]] - (q[tt] - j) / v * w <= g[k] - (k - j) / v * w) tt -- ;
q[ ++ tt] = k;
}
}
}
cout << f[m] << endl;
return 0;
}
最后,如果觉得对您有帮助的话,点个赞再走吧!