[NOIP2016 提高组] 愤怒的小鸟
题目描述
Kiana
最近沉迷于一款神奇的游戏无法自拔。
简单来说,这款游戏是在一个平面上进行的。
有一架弹弓位于 (0,0) 处,每次 Kiana
可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 y=ax2+bx 的曲线,其中 a,b 是Kiana
指定的参数,且必须满足 a<0,a,b 都是实数。
当小鸟落回地面(即 x 轴)时,它就会瞬间消失。
在游戏的某个关卡里,平面的第一象限中有 n 只绿色的小猪,其中第 i 只小猪所在的坐标为 (xi,yi)。
如果某只小鸟的飞行轨迹经过了 (xi,yi),那么第 i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;
如果一只小鸟的飞行轨迹没有经过 (xi,yi),那么这只小鸟飞行的全过程就不会对第 i 只小猪产生任何影响。
例如,若两只小猪分别位于 (1,3) 和 (3,3),Kiana
可以选择发射一只飞行轨迹为 y=−x2+4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。
而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。
这款神奇游戏的每个关卡对 Kiana
来说都很难,所以Kiana
还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。
假设这款游戏一共有 T 个关卡,现在 Kiana
想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。
输入格式
第一行包含一个正整数 T,表示游戏的关卡总数。
下面依次输入这 T 个关卡的信息。每个关卡第一行包含两个非负整数 n,m,分别表示该关卡中的小猪数量和 Kiana 输入的神秘指令类型。接下来的 n 行中,第 i 行包含两个正实数 xi,yi,表示第 i 只小猪坐标为 (xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。
如果 m=0,表示Kiana
输入了一个没有任何作用的指令。
如果 m=1,则这个关卡将会满足:至多用 ⌈n/3+1⌉ 只小鸟即可消灭所有小猪。
如果 m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 ⌊n/3⌋ 只小猪。
保证 1≤n≤18,0≤m≤2,0<xi,yi<10,输入中的实数均保留到小数点后两位。
上文中,符号 ⌈c⌉ 和 ⌊c⌋ 分别表示对 c 向上取整和向下取整,例如:⌈2.1⌉=⌈2.9⌉=⌈3.0⌉=⌊3.0⌋=⌊3.1⌋=⌊3.9⌋=3。
输出格式
对每个关卡依次输出一行答案。
输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。
样例 #1
样例输入 #1
2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00
样例输出 #1
1
1
样例 #2
样例输入 #2
3
2 0
1.41 2.00
1.73 3.00
3 0
1.11 1.41
2.34 1.79
2.98 1.49
5 0
2.72 2.72
2.72 3.14
3.14 2.72
3.14 3.14
5.00 5.00
样例输出 #2
2
2
3
样例 #3
样例输入 #3
1
10 0
7.16 6.28
2.02 0.38
8.33 7.78
7.68 2.09
7.46 7.86
5.77 7.44
8.24 6.72
4.42 5.11
5.42 7.79
8.15 4.99
样例输出 #3
6
提示
【样例解释1】
这组数据中一共有两个关卡。
第一个关卡与【问题描述】中的情形相同,2只小猪分别位于(1.00,3.00)和 (3.00,3.00),只需发射一只飞行轨迹为y=−x2+4x的小鸟即可消灭它们。
第二个关卡中有5只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y=−x2+6x上,故Kiana
只需要发射一只小鸟即可消灭所有小猪。
首先,我们来理解一下这道题:
这道题简单来说就是 用抛物线打闻天猪
这只鸟射出去到打到猪经历的是一条抛物线
比如说直线y=kx+b,如果说求出一个x,y带进去符合解析式,那么这个点一定在这条直线上(不要管这是废话)
1.对于此题,抛物线y=ax^2+bx,所以只求出两个点就好
2.也就是说,对于这道题,两个点就确定了一条抛物线
又因为你不知道你怎么打,那么就可以用i,j来确定这条抛物线,然后把其他点往这里带即可_
3.你已经把抛物线拿出来了,只需要把每个点都带进去就行,只需要计算出来哪些抛物线能打哪些个点
4.现在就可以状压
q.为什么是状压呢?
a :
我们可以定义一个状态f[s]=f[01011110]用的小鸟最少
就是说最后打小猪的状态打下来为1,没打下来标记为0.
关键是这种状态如何转移,如果说用一条抛物线“101100”(因为你能确定一条抛物线能够打掉哪些小猪)
再用一条抛物线“001001”再来一条抛物线”111001“....把他们并在一起
因为每条抛物线都有一些“1”,要求抛物线越少越好。(要求状态最少)
现在,看代码
Code(C++)
#include<iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define eps 1e-6
using namespace std;
double x[20] , y[20];
int f[262150] , g[20][20];
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
memset(g , 0 , sizeof(g));
int n , m , i , j , k;
double a , b;
scanf("%d%d" , &n , &m);
for(i = 0 ; i < n ; i ++ )
scanf("%lf%lf" , &x[i] , &y[i]);
for(i = 0 ; i < n ; i ++ )
{
for(j = 0 ; j < n ; j ++ )
{
if(i != j)
{
a = (x[j] * y[i] - x[i] * y[j]) / (x[i] * x[j] * (x[i] - x[j]));
b = (x[j] * x[j] * y[i] - x[i] * x[i] * y[j]) / (x[i] * x[j] * (x[j] - x[i]));
if(a <= eps)
for(k = 0 ; k < n ; k ++ )
if(fabs(a * x[k] * x[k] + b * x[k] - y[k]) <= eps)
g[i][j] |= 1 << k;
}
}
}
f[0] = 0;
for(i = 1 ; i < (1 << n) ; i ++ )
{
for(j = 0 ; j < n ; j ++ )
if((1 << j) & i)
break;
f[i] = f[i ^ (1 << j)] + 1;
for(k = 0 ; k < n ; k ++ )
if(k != j && (1 << k) & i)
f[i] = min(f[i] , f[i ^ (i & g[j][k])] + 1);
}
printf("%d\n" , f[(1 << n) - 1]);
}
return 0;
}