算法基础课题解合集
二维差分公式
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
这个公式是从二维前缀和反推过来的,因为差分是前缀和的逆运算。
代码
#include <iostream>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];
void insert(int x1, int y1, int x2, int y2, int c)
{
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
int main()
{
cin >> n >> m >> q;
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= m; j ++)
cin >> a[i][j];
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= m; j ++)
insert(i, j, i, j, a[i][j]);
while (q --)
{
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
insert(x1, y1, x2, y2, c);
}
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= m; j ++)
b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
for (int i = 1; i <= n; i ++, cout << endl)
for (int j = 1; j <= m; j ++)
cout << b[i][j] << " ";
return 0;
}
这篇有点水啊……主要是懒了……就摸一下吧,hh
$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\quad$$\mathcal{writer\enspace by \enspace acwing}$ : $\mathfrak{天元之弈}$