AcWing 846. 树的重心
给定一颗树,树中包含 n 个结点(编号 1∼n)和 n−1 条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
输入格式
第一行包含整数 n,表示树的结点数。
接下来 n−1 行,每行包含两个整数 a 和 b,表示点 a 和点 b 之间存在一条边。
输出格式
输出一个整数 m,表示将重心删除后,剩余各个连通块中点数的最大值。
数据范围
1≤n≤10^5
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6
4
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = N * 2;
int n;
int h[N], e[M], ne[M], idx;
int ans = N;
bool st[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
int dfs(int u)
{
st[u] = true;
int size = 0, sum = 0;
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (st[j]) continue;
int s = dfs(j);
size = max(size, s);
sum += s;
}
size = max(size, n - sum - 1);
ans = min(ans, size);
return sum + 1;
}
int main()
{
scanf("%d", &n);
memset(h, -1, sizeof h);
for (int i = 0; i < n - 1; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
dfs(1);
printf("%d\n", ans);
return 0;
}