排序专题
稳定性的概念:稳定性是指相等的元素经过排序之后相对顺序是否发生了改变。
c++中sort函数是非稳定的,stable_sort函数是稳定的。
稳定排序:基数排序、计数排序、插入排序、冒泡排序、归并排序
非稳定排序:选择排序、堆排序、快速排序、希尔排序
排序算法时间复杂度:
1.插入排序
void insert_sort()
{
for (int i = 1; i < n; i ++ )
{
int x = a[i];
int j = i-1;
while (j >= 0 && x < a[j])
{
a[j+1] = a[j];
j -- ;
}
a[j+1] = x;
}
}
2选择排序
void select_sort()
{
for (int i = 0; i < n; i ++ )
{
int k = i;
for (int j = i+1; j < n; j ++ )
{
if (a[j] < a[k])
k = j;
}
swap(a[i], a[k]);
}
}
3冒泡排序
void bubble_sort()
{
for (int i = n-1; i >= 1; i -- )
{
bool flag = true;
for (int j = 1; j <= i; j ++ )
if (a[j-1] > a[j])
{
swap(a[j-1], a[j]);
flag = false;
}
if (flag) return;
}
}
4希尔排序
void shell_sort()
{
for (int gap = n >> 1; gap; gap >>= 1)
{
for (int i = gap; i < n; i ++ )
{
int x = a[i];
int j;
for (j = i; j >= gap && a[j-gap] > x; j -= gap)
a[j] = a[j-gap];
a[j] = x;
}
}
}
5快速排序(最快)
void quick_sort(int q[], int l, int r)
{
//递归的终止情况
if(l >= r) return;
//第一步:分成子问题
int i = l - 1, j = r + 1, x = q[l + r >> 1];
while(i < j)
{
do i++; while(q[i] < x);
do j--; while(q[j] > x);
if(i < j) swap(q[i], q[j]);
}
//第二步:递归处理子问题
quick_sort(q, l, j), quick_sort(q, j + 1, r);
//第三步:子问题合并.快排这一步不需要操作,但归并排序的核心在这一步骤
}
6归并排序
void merge_sort(int q[], int l, int r)
{
//递归的终止情况
if(l >= r) return;
//第一步:分成子问题
int mid = l + r >> 1;
//第二步:递归处理子问题
merge_sort(q, l, mid ), merge_sort(q, mid + 1, r);
//第三步:合并子问题
int k = 0, i = l, j = mid + 1, tmp[r - l + 1];
while(i <= mid && j <= r)
if(q[i] <= q[j]) tmp[k++] = q[i++];
else tmp[k++] = q[j++];
while(i <= mid) tmp[k++] = q[i++];
while(j <= r) tmp[k++] = q[j++];
for(k = 0, i = l; i <= r; k++, i++) q[i] = tmp[k];
}
7堆排序(须知此排序为使用了模拟堆,为了使最后一个非叶子节点的编号为n/2,数组编号从1开始)
https://www.cnblogs.com/wanglei5205/p/8733524.html
void down(int u)
{
int t = u;
if (u<<1 <= n && h[u<<1] < h[t]) t = u<<1;
if ((u<<1|1) <= n && h[u<<1|1] < h[t]) t = u<<1|1;
if (u != t)
{
swap(h[u], h[t]);
down(t);
}
}
int main()
{
for (int i = 1; i <= n; i ++ ) cin >> h[i];
for (int i = n/2; i; i -- ) down(i);
while (true)
{
if (!n) break;
cout << h[1] << ' ';
h[1] = h[n];
n -- ;
down(1);
}
return 0;
}
8基数排序
int maxbit()
{
int maxv = a[0];
for (int i = 1; i < n; i ++ )
if (maxv < a[i])
maxv = a[i];
int cnt = 1;
while (maxv >= 10) maxv /= 10, cnt ++ ;
return cnt;
}
void radixsort()
{
int t = maxbit();
int radix = 1;
for (int i = 1; i <= t; i ++ )
{
for (int j = 0; j < 10; j ++ ) count[j] = 0;
for (int j = 0; j < n; j ++ )
{
int k = (a[j] / radix) % 10;
count[k] ++ ;
}
for (int j = 1; j < 10; j ++ ) count[j] += count[j-1];
for (int j = n-1; j >= 0; j -- )
{
int k = (a[j] / radix) % 10;
temp[count[k]-1] = a[j];
count[k] -- ;
}
for (int j = 0; j < n; j ++ ) a[j] = temp[j];
radix *= 10;
}
}
9计数排序
void counting_sort()
{
int sorted[N];
int maxv = a[0];
for (int i = 1; i < n; i ++ )
if (maxv < a[i])
maxv = a[i];
int count[maxv+1];
for (int i = 0; i < n; i ++ ) count[a[i]] ++ ;
for (int i = 1; i <= maxv; i ++ ) count[i] += count[i-1];
for (int i = n-1; i >= 0; i -- )
{
sorted[count[a[i]]-1] = a[i];
count[a[i]] -- ;
}
for (int i = 0; i < n; i ++ ) a[i] = sorted[i];
}
10桶排序(基数排序是桶排序的特例,优势是可以处理浮点数和负数,劣势是还要配合别的排序函数)
vector<int> bucketSort(vector<int>& nums) {
int n = nums.size();
int maxv = *max_element(nums.begin(), nums.end());
int minv = *min_element(nums.begin(), nums.end());
int bs = 1000;
int m = (maxv-minv)/bs+1;
vector<vector<int> > bucket(m);
for (int i = 0; i < n; ++i) {
bucket[(nums[i]-minv)/bs].push_back(nums[i]);
}
int idx = 0;
for (int i = 0; i < m; ++i) {
int sz = bucket[i].size();
bucket[i] = quickSort(bucket[i]);
for (int j = 0; j < sz; ++j) {
nums[idx++] = bucket[i][j];
}
}
return nums;
}
第一题: 线性查找第K个元素
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define PII pair<int,int>
const int N=1e6+5;
int n,m,k;
int s[50000010];
int quick_sort(int l,int r,int k)
{
if(l==r) return s[l];
int mid=s[(l+r)>>1];
int i=l-1;
int j=r+1;
while(i<j)
{
do i++;while(s[i]>mid);
do j--;while(s[j]<mid);
if(i<j) swap(s[i],s[j]);
}
int num=j-l+1;
if(k<=num) quick_sort(l,j,k);
else quick_sort(j+1,r,k-num);
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>n>>m>>k;
cin>>s[1]>>s[2];
for(int i=3;i<=n;i++)
{
ll x=s[i-2];
x=x*s[i-1]%m;
s[i]=x;
}
int t=quick_sort(1,n,k);
cout<<t<<endl;
return 0;
}