为什么要使用BN呢?
当神经网络比较深的时候会发现:数据在下面,损失函数在上面,这样会出现什么问题?
- 正向传递的时候,数据是从下往上一步一步往上传递
- 反向传递的时候,数据是从上面往下传递,这时候就会出现问题:梯度在上面的时候比较大,越到下面就越容易变小(因为是n个很小的数进行相乘,越到后面结果就越小,也就是说越靠近数据的,层的梯度就越小)
- 上面的梯度比较大,那么每次更新的时候上面的层就会不断地更新;但是下面层因为梯度比较小,所以对权重地更新就比较少,这样的话就会导致上面的收敛比较快,而下面的收敛比较慢,这样就会导致底层靠近数据的内容(网络所尝试抽取的网络底层的特征:简单的局部边缘、纹理等信息)变化比较慢,上层靠近损失的内容(高层语义信息)收敛比较快,所以每一次底层发生变化,所有的层都得跟着变(底层的信息发生变化就导致上层的权重全部白学了),这样就会导致模型的收敛比较慢
- 所以提出了假设:能不能在改变底部信息的时候,避免顶部不断的重新训练?(这也是批量归一化所考虑的问题)
总结:
- 在模型训练过程中,批量归一化利用小批量的均值和标准差,不断调整神经网络的中间输出,使整个神经网络各层的中间输出值更加稳定(对于全连接层,作用在每一个特征维(每一列)上;对于卷积层,拉成一个矩阵之后,作用在输出维)
- 可以加速收敛速度(使用了批量归一化之后,学习率可以调的比较大,用更大的学习率训练可以提高训练速度,不会出现学习率过大时,上层梯度爆炸,梯度较小时,下层梯度消失的情况。将每一层的输入变成差不多的分布之后,就可以使用大一点的学习率 ),但一般不改变模型精度
import torch
from torch import nn
from d2l import torch as d2l
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
# momentum is designed to update moving_mean moving_var
# 通过is_grad_enabled方法来判断当前模式是训练模式还是预测模式
if not torch.is_grad_enabled():
# 如果在预测模式下,直接用传入的移动平均所得的均值和方差
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:
# 使用全连接层的情况,计算特征维上的均值和方差
mean = X.mean(dim=0)
var = ((X - mean) ** 2).mean(dim=0)
else:
# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差
# 这里我们需要保持X的形状以便后面可以做广播运算
mean = X.mean(dim=(0, 2, 3), keepdim=True)
var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
X_hat = (X - mean) / torch.sqrt(var + eps)
moving_mean = momentum * moving_mean + (1 - momentum) * mean
moving_var = momentum * moving_var + (1 - momentum) * var
Y = gamma * X_hat + beta
return Y, moving_mean.data, moving_var.data
# 创建BatchNorm层
class BatchNorm(nn.Module):
# num_features: 全连接层的输出数量或卷积层的输出通道数
# num_dims: 2表示完全连接层,4表示卷积层
def __init__(self, num_features, num_dims):
super().__init__()
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
# 参与求梯度和迭代的拉伸参数和偏移参数,分别初始化为1和0
self.gamma = nn.Parameter(torch.ones(shape))
self.beta = nn.Parameter(torch.zeros(shape))
# 非模型参数的变量初始化为0和1
self.moving_mean = torch.zeros(shape)
self.moving_var = torch.ones(shape)
def forward(self, X):
# 如果X不在内存上,则复制moving_mean和moving_var到X所在的显存上
if self.moving_mean.device != X.device:
self.moving_mean = self.moving_mean.to(X.device)
self.moving_var = self.moving_var.to(X.device)
# 保存更新过的moving_mean和moving_var
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma, self.beta, self.moving_mean, self.moving_var,
eps=1e-5, momentum=0.9)
return Y
# 应用BatchNorm于LeNet模型
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5, padding=2), BatchNorm(6, 4),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, 4),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(16 * 5 * 5, 120), BatchNorm(120, 2), nn.Dropout(0.5),
nn.ReLU(),
nn.Linear(120, 84), BatchNorm(84, 2), nn.Dropout(0.5),
nn.ReLU(),
nn.Linear(84, 10))
lr, num_epochs, batch_size = 0.05, 50, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()
简洁使用:
# 简洁使用
net = nn.Sequential(nn.Conv2d(1,6,kernel_size=5),nn.BatchNorm2d(6),
nn.Sigmoid(),nn.MaxPool2d(kernel_size=2,stride=2),
nn.Conv2d(6,16,kernel_size=5),nn.BatchNorm2d(16),
nn.Sigmoid(),nn.MaxPool2d(kernel_size=2,stride=2),
nn.Flatten(),nn.Linear(256,120),nn.BatchNorm1d(120),
nn.Sigmoid(),nn.Linear(120,84),nn.BatchNorm1d(84),
nn.Sigmoid(),nn.Linear(84,10))