import hashlib
import os
import tarfile
import zipfile
import requests
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
# 下载和缓存数据集
DATA_HUB = dict() # 创建一个字典
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
def download(name, cache_dir=os.path.join('..', 'data')):
"""下载一个DATA_HUB中的文件,返回本地文件名"""
assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}" # 检查name是否作为值在DATA_HUB中
url, sha1_hash = DATA_HUB[name]
os.makedirs(cache_dir, exist_ok=True)
fname = os.path.join(cache_dir, url.split('/')[-1])
if os.path.exists(fname):
sha1 = hashlib.sha1()
with open(fname, 'rb') as f: # 以二进制只读模式打开文件
while True:
data = f.read(1048576) # 每次读1MB的数据
if not data:
break
sha1.update(data)
if sha1.hexdigest() == sha1_hash: # 比较两个哈希值是否相等
return fname # 命中缓存
print(f'正在从{url}下载{fname}...')
r = requests.get(url, stream=True, verify=True)
with open(fname, 'wb') as f:
f.write(r.content)
return fname
def download_extract(name, folder=None):
"""下载并解压zip/tar文件"""
fname = download(name)
base_dir = os.path.dirname(fname)
data_dir, ext = os.path.splitext(fname) # 文件名与拓展名
if ext == '.zip':
fp = zipfile.ZipFile(fname, 'r')
elif ext == '.tar':
fp = tarfile.open(fname, 'r')
else:
assert False, '只有zip/tar文件可以被解压缩'
fp.extractall(base_dir)
return os.path.join(base_dir, folder) if folder else data_dir
def download_all():
"""下载DATA_HUB中的所有文件"""
for name in DATA_HUB:
download(name)
# 访问和读取数据集
DATA_HUB['kaggle_house_train'] = (DATA_URL + 'kaggle_house_pred_train.csv',
'585e9cc9370b9160e7921475fbcd7d31219ce')
DATA_HUB['kaggle_house_test'] = (DATA_URL + 'kaggle_house_pred_test.csv',
'fal9780a7b011d9b009e8bff8e99922a8ee2eb90')
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))
# 看一下数据集长什么样子
'''
print(train_data.shape)
print(test_data.shape)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
'''
# 看到第一个特征是ID,不带有任何预测信息,所以移除
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:])) # 沿着行连接训练集和测试集的特征
# 数据预处理
# 若无法获得测试数据,可以根据训练数据计算均值和标准差
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index # 获得all_features中的数值的索引
all_features[numeric_features] = all_features[numeric_features].apply(
lambda x: (x - x.mean()) / x.std()) # 将数值转为均值为0,标准差为1的数
# 在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)
# 处理离散值
# dummy_na=True将na(缺失值)视为有效的特征值
all_features = pd.get_dummies(all_features, dummy_na=True)
# print(all_features.shape)
n_train = train_data.shape[0]
# 预处理完后要将训练集和测试集分隔开
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32) # 还需要将售价提取出来
# 训练
loss = nn.MSELoss()
in_features = train_features.shape[1]
def get_net():
net = nn.Sequential(nn.Linear(in_features, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64,1))
return net
def log_rmse(net, features, labels):
# 为了取对数时进一步稳定该值, 将小于1的值设置为1
clipped_preds = torch.clamp(net(features), 1, float('inf'))
"""
torch.clamp(input, min, max):这个函数将 input 张量中的每个元素的值限制在 [min, max] 的范围内。如果某个元素的值小于 min,则将其
设置为 min;如果大于 max,则将其设置为 max;如果已经在 [min, max] 范围内,则保持不变。
"""
rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))
return rmse.item()
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, lr, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
# 这里使用的是Adam优化器
optimizer = torch.optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
l = loss(net(X), y)
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
# K折交叉验证
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size) # 返回一个对象切片器 从j * fold_size 到 (j + 1) * fold_size
X_part, y_part = X[idx, :], y[idx]
if j == 1:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat([X_train, X_part], 0)
y_train = torch.cat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
def k_fold(k, X_train, y_train, num_epochs, lr, weight_decay, batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net()
train_ls, valid_ls = train(net, *data, num_epochs, lr, weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
legend=['train', 'valid'], yscale='log')
print(f'折{i + 1}, 训练log rmse{float(train_ls[-1]):f},'
f'验证log rmse{float(valid_ls[-1]):f}')
return train_l_sum / k, valid_l_sum / k
k, num_epochs, lr, weight_decay, batch_size = 5, 200, 0.03, 0.5, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print(f'{k}-折验证:平均训练log rmse: {float(train_l):f},'
f'平均验证log rmse: {float(valid_l):f}')
d2l.plt.show()
def train_and_pred(train_features, test_feature, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
print(f'train log rmse {float(train_ls[-1]):f}')
preds = net(test_features).detach().numpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data,num_epochs, lr, weight_decay, batch_size)
cool,但是C+党完全看不懂qwq
本质上没区别..只不过封装了一层让c语言变得像英语一样…numpy/pytorch。认真看个几周基本就能看懂了