第六章 事务和索引
什么是事务,要么都成功,要么都失败
1. sql A 给 B 转账 A 1000 -- > 200 B: 200
2. sql B 收到 A 的 钱 A 800 B 400
将一组SQL放在一个批次中执行
事务(Transaction)原则
ACID原则
原子性(atomicity)、一致性(consistency)、隔离性(isolation)、持久性(durability)
脏读、幻读
原子性
要么都成功,要么都失败
一致性
事务前后的数据要保证完整性,1000
隔离性
无法被其他事务干扰
持久性
事务一旦提交不可逆转,被持久化到数据库中
隔离性中,如果无法保证,存在干扰
- 脏读
- 一个事务读取了另一个事务未提交的数据
- 不可重复读
- 多次读取的数据不一致
- 幻读
- 一般有人插入了新的数据,多了新的一行
6.1 事务
mysql 是默认开启事务自动提交的
SET autocommit = 0 -- 关闭
SET autocommit = 1 --开启 默认值
-- 手动处理事务
-- 事务开启 关闭自动提交
SET autocommit = 0
SET TRANSACTION -- 标记一个事务的开始
INSERT xxx
INSERT xxx
-- 提交 持久化(成功)
COMMIT
-- 回滚 失败
ROLLBACK
-- 事务结束 开启自动提交
SET autocommit = 1
SAVEPOINT -- 设置一个事务的保存点
SAVEPOINT 存档1
ROLLBACK TO 存档1 --回滚到保存点
/*
课堂测试题目
A在线买一款价格为500元商品,网上银行转账.
A的银行卡余额为2000,然后给商家B支付500.
商家B一开始的银行卡余额为10000
创建数据库shop和创建表account并插入2条数据
*/
CREATE DATABASE `shop`CHARACTER SET utf8 COLLATE utf8_general_ci;
USE `shop`;
CREATE TABLE `account` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`name` VARCHAR(32) NOT NULL,
`cash` DECIMAL(9,2) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8
INSERT INTO account (`name`,`cash`)
VALUES('A',2000.00),('B',10000.00)
-- 转账实现
SET autocommit = 0; -- 关闭自动提交
START TRANSACTION; -- 开始一个事务,标记事务的起始点
UPDATE account SET cash=cash-500 WHERE `name`='A';
UPDATE account SET cash=cash+500 WHERE `name`='B';
COMMIT; -- 提交事务
# rollback;
SET autocommit = 1; -- 恢复自动提交
6.2 索引
-
主键索引 (Primary Key)
-
唯一表示,主键不能重复,只能有一个列作为主键
-
唯一索引 (Unique)
-
避免重复的列出现,唯一索引可以重复,多个列都可以表示为唯一索引
CREATE TABLE `Grade`(
`GradeID` INT(11) AUTO_INCREMENT PRIMARYKEY,
`GradeName` VARCHAR(32) NOT NULL UNIQUE
-- 或 UNIQUE KEY `GradeID` (`GradeID`)
)
-
常规索引 (Index)
-
默认。index,key关键字设置
``
CREATE TABLE
result(
-- 省略一些代码
INDEX/KEY
ind(
studentNo,
subjectNo`) – 创建表时添加
)
– 创建后添加
ALTER TABLE result
ADD INDEX ind
(studentNo
,subjectNo
);
```
-
全文索引 (FullText)
-
在特点数据库才有 MyISAM
- 快速定位数据
- 只能用于MyISAM类型的数据表
- 只能用于CHAR , VARCHAR , TEXT数据列类型
- 适合大型数据集
SHOW INDEX FROM `student`
/*
#方法一:创建表时
CREATE TABLE 表名 (
字段名1 数据类型 [完整性约束条件…],
字段名2 数据类型 [完整性约束条件…],
[UNIQUE | FULLTEXT | SPATIAL ] INDEX | KEY
[索引名] (字段名[(长度)] [ASC |DESC])
);
#方法二:CREATE在已存在的表上创建索引
CREATE [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名
ON 表名 (字段名[(长度)] [ASC |DESC]) ;
#方法三:ALTER TABLE在已存在的表上创建索引
ALTER TABLE 表名 ADD [UNIQUE | FULLTEXT | SPATIAL ] INDEX
索引名 (字段名[(长度)] [ASC |DESC]) ;
#删除索引:DROP INDEX 索引名 ON 表名字;
#删除主键索引: ALTER TABLE 表名 DROP PRIMARY KEY;
#显示索引信息: SHOW INDEX FROM student;
*/
/*增加全文索引*/
ALTER TABLE `school`.`student` ADD FULLTEXT INDEX `studentname` (`StudentName`);
/*EXPLAIN : 分析SQL语句执行性能*/
EXPLAIN SELECT * FROM student WHERE studentno='1000';
/*使用全文索引*/
-- 全文搜索通过 MATCH() 函数完成。
-- 搜索字符串作为 against() 的参数被给定。搜索以忽略字母大小写的方式执行。对于表中的每个记录行,MATCH() 返回一个相关性值。即,在搜索字符串与记录行在 MATCH() 列表中指定的列的文本之间的相似性尺度。
EXPLAIN SELECT *FROM student WHERE MATCH(studentname) AGAINST('love');
/*
开始之前,先说一下全文索引的版本、存储引擎、数据类型的支持情况
MySQL 5.6 以前的版本,只有 MyISAM 存储引擎支持全文索引;
MySQL 5.6 及以后的版本,MyISAM 和 InnoDB 存储引擎均支持全文索引;
只有字段的数据类型为 char、varchar、text 及其系列才可以建全文索引。
测试或使用全文索引时,要先看一下自己的 MySQL 版本、存储引擎和数据类型是否支持全文索引。
*/
测试索引
建表app_user:
CREATE TABLE `app_user` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(50) DEFAULT '' COMMENT '用户昵称',
`email` varchar(50) NOT NULL COMMENT '用户邮箱',
`phone` varchar(20) DEFAULT '' COMMENT '手机号',
`gender` tinyint(4) unsigned DEFAULT '0' COMMENT '性别(0:男;1:女)',
`password` varchar(100) NOT NULL COMMENT '密码',
`age` tinyint(4) DEFAULT '0' COMMENT '年龄',
`create_time` datetime DEFAULT CURRENT_TIMESTAMP,
`update_time` timestamp NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='app用户表'
批量插入数据:100w
DROP FUNCTION IF EXISTS mock_data;
DELIMITER $$
CREATE FUNCTION mock_data()
RETURNS INT
BEGIN
DECLARE num INT DEFAULT 1000000;
DECLARE i INT DEFAULT 0;
WHILE i < num DO
INSERT INTO app_user(`name`, `email`, `phone`, `gender`, `password`, `age`)
VALUES(CONCAT('用户', i), '24736743@qq.com', CONCAT('18', FLOOR(RAND()*(999999999-100000000)+100000000)),FLOOR(RAND()*2),UUID(), FLOOR(RAND()*100));
SET i = i + 1;
END WHILE;
RETURN i;
END;
SELECT mock_data();
索引效率测试
无索引
SELECT * FROM app_user WHERE name = '用户9999'; -- 查看耗时
SELECT * FROM app_user WHERE name = '用户9999';
SELECT * FROM app_user WHERE name = '用户9999';
mysql> EXPLAIN SELECT * FROM app_user WHERE name = '用户9999'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: app_user
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 992759
filtered: 10.00
Extra: Using where
1 row in set, 1 warning (0.00 sec)
创建索引
CREATE INDEX idx_app_user_name ON app_user(name);
测试普通索引
mysql> EXPLAIN SELECT * FROM app_user WHERE name = '用户9999'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: app_user
partitions: NULL
type: ref
possible_keys: idx_app_user_name
key: idx_app_user_name
key_len: 203
ref: const
rows: 1
filtered: 100.00
Extra: NULL
1 row in set, 1 warning (0.00 sec)
mysql> SELECT * FROM app_user WHERE name = '用户9999';
1 row in set (0.00 sec)
mysql> SELECT * FROM app_user WHERE name = '用户9999';
1 row in set (0.00 sec)
mysql> SELECT * FROM app_user WHERE name = '用户9999';
1 row in set (0.00 sec)
索引准则
- 索引不是越多越好
- 不要对经常变动的数据加索引
- 小数据量的表建议不要加索引
- 索引一般应加在查找条件的字段
索引的数据结构
-- 我们可以在创建上述索引的时候,为其指定索引类型,分两类
hash类型的索引:查询单条快,范围查询慢
btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它)
-- 不同的存储引擎支持的索引类型也不一样
InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;