排序算法 总结
- in-place 占用常数内存,不占用额外内存
- out-place 占用额外内存,内存与n相关
1冒泡排序
void bubble_sort(int* a, int n)
{
for (int i = n-1; i >= 1; i -- )
{
bool flag = true;
for (int j = 1; j <= i; j ++ )
if (a[j-1] > a[j])
{
swap(a[j-1], a[j]);
flag = false;
}
if (flag) return;
}
}
2选择排序
void select_sort(int *a, int n)
{
for (int i = 0; i < n; i ++ )
{
int k = i;
for (int j = i+1; j < n; j ++ )
{
if (a[j] < a[k])
k = j;
}
swap(a[i], a[k]);
}
}
3插入排序
void insert_sort(int *a, int n)
{
for (int i = 1; i < n; i ++ )
{
int x = a[i];
int j = i-1;
while (j >= 0 && x < a[j])
{
a[j+1] = a[j];
j -- ;
}
a[j+1] = x;
}
}
4希尔排序
void shell_sort(int *a, int n)
{
for (int gap = n >> 1; gap; gap >>= 1)
{
for (int i = gap; i < n; i ++ )
{
int x = a[i];
int j;
for (j = i; j >= gap && a[j-gap] > x; j -= gap)
a[j] = a[j-gap];
a[j] = x;
}
}
}
AcWing 787.归并排序
AcWing 788.逆序对数量
5归并排序 - 是二分的两个有序序列归并为一个有序序列
- 思想:分治,二叉树划分,递归
- 注意:需要开一个tmp数组存放左子树和右子树中小的一个,一直保证从两个有序子树中取值
void merge_sort(int *a, int l,int r)
{
if(l >= r) return ;
int mid = l + r >> 1;
merge_sort(a, l, mid), merge_sort(a, mid+1, r);
int k = 0, i = l, j = mid + 1;
while(i <= mid && j <= r)
{
if(a[i] <= a[j]) tmp[k++] = a[i++];
else tmp[k++] = a[j++];
}
while(i <= mid) tmp[k++] = a[i++];
while(j <= r) tmp[k++] = a[j++];
for(int i = l, j = 0; i <= r; i ++, j ++) a[i] = tmp[j];
}
AcWing 785.快速排序
AcWing 786.第k个数
6快速排序(最快)
- 思想:分治,双指针,递归
- 注意:边界的选取,以防segmentation fault越界等问题
void quick_sort(int *a, int l, int r)
{
if (l >= r) return ;
int x = a[l+r>>1], i = l-1, j = r+1;
while (i < j)
{
while (a[++ i] < x);
while (a[-- j] > x);
if (i < j) swap(a[i], a[j]);
}
quick_sort(a, l, j), quick_sort(a, j+1, r);
}
7堆排序(须知此排序为使用了模拟堆,为了使最后一个非叶子节点的编号为n/2,数组编号从1开始)
void down(int *a, int u)
{
int t = u;
if (u<<1 <= n && a[u<<1] < a[t]) t = u<<1;
if ((u<<1|1) <= n && a[u<<1|1] < a[t]) t = u<<1|1;
if (u != t)
{
swap(a[u], a[t]);
down(a, t);
}
}
int main()
{
for (int i = 1; i <= n; i ++ ) cin >> a[i];
for (int i = n/2; i; i -- ) down(a, i);
while (true)
{
if (!n) break;
cout << a[1] << ' ';
a[1] = a[n];
n -- ;
down(a, 1);
}
return 0;
}
8计数排序
void counting_sort(int *a, int n)
{
int sorted[N];
int maxv = a[0];
for (int i = 1; i < n; i ++ )
if (maxv < a[i])
maxv = a[i];
int count[maxv+1];
for (int i = 0; i < n; i ++ ) count[a[i]] ++ ;
for (int i = 1; i <= maxv; i ++ ) count[i] += count[i-1];
for (int i = n-1; i >= 0; i -- )
{
sorted[count[a[i]]-1] = a[i];
count[a[i]] -- ;
}
for (int i = 0; i < n; i ++ ) a[i] = sorted[i];
}
9桶排序(基数排序是桶排序的特例,优势是可以处理浮点数和负数,劣势是还要配合别的排序函数)
vector<int> bucketSort(vector<int>& nums) {
int n = nums.size();
int maxv = *max_element(nums.begin(), nums.end());
int minv = *min_element(nums.begin(), nums.end());
int bs = 1000;
int m = (maxv-minv)/bs+1;
vector<vector<int> > bucket(m);
for (int i = 0; i < n; ++i) {
bucket[(nums[i]-minv)/bs].push_back(nums[i]);
}
int idx = 0;
for (int i = 0; i < m; ++i) {
int sz = bucket[i].size();
bucket[i] = quickSort(bucket[i]);
for (int j = 0; j < sz; ++j) {
nums[idx++] = bucket[i][j];
}
}
return nums;
}
10基数排序
int maxbit(int *a, int n)
{
int maxv = a[0];
for (int i = 1; i < n; i ++ )
if (maxv < a[i])
maxv = a[i];
int cnt = 1;
while (maxv >= 10) maxv /= 10, cnt ++ ;
return cnt;
}
void radixsort()
{
int t = maxbit();
int radix = 1;
for (int i = 1; i <= t; i ++ )
{
for (int j = 0; j < 10; j ++ ) count[j] = 0;
for (int j = 0; j < n; j ++ )
{
int k = (a[j] / radix) % 10;
count[k] ++ ;
}
for (int j = 1; j < 10; j ++ ) count[j] += count[j-1];
for (int j = n-1; j >= 0; j -- )
{
int k = (a[j] / radix) % 10;
temp[count[k]-1] = a[j];
count[k] -- ;
}
for (int j = 0; j < n; j ++ ) a[j] = temp[j];
radix *= 10;
}
}