二项式系数的应用与和式简单处理
化简:$\sum_{i=0}^n\binom{n}{i}i$
解:
$$
\begin{aligned}
\sum_{i=0}^n\binom{n}{i}i \ &=\sum_{i=0}^n\frac{n}{i}\binom{n-1}{i-1}i\\\
&=n\times \sum_{i=0}^{n-1}\binom{n}{i}\\\
&=n\times2^{n-1}
\end{aligned}
$$
化简$\sum_{i=0}^n\sum_{j=0}^i\binom{n}{j}$
(交换求和顺序)
解:
$$
\begin{aligned}
\sum_{i=0}^{n} \sum_{j=0}^{i}\left(\begin{array}{l}
n \\\
j
\end{array}\right) &=\sum_{j=0}^{n}\left(\begin{array}{c}
n \\\
j
\end{array}\right) \sum_{i=j}^{n} 1 \\\
&=\sum_{j=0}^{n}\left(\begin{array}{c}
n \\\
j
\end{array}\right)(n-j+1) \\\
&=(n+1) \sum_{j=0}^{n}\left(\begin{array}{c}
n \\\
j
\end{array}\right)-\sum_{j=0}^{n} j\left(\begin{array}{c}
n \\\
j
\end{array}\right) \\\
&=(n+1) 2^{n}-n 2^{n-1} \\\
&=(n+2) 2^{n-1}
\end{aligned}
$$
化简:$\sum_{i=k}^n\binom{i}{k}$
解:将其看成$\sum_{i=k}^n(1+x)^i$的$k$次幂系数和
$$
\begin{aligned}
\sum_{i=k}^n(1+x)^i&=(1+x)^k\times\frac{1-(1+x)^{n-k+1}}{1-(1+x)}\\\
&=\frac{(1+x)^{n+1}-(1+x)^k}{x}\\\
&=\frac{\sum_{i=0}^{n+1}\binom{n+1}{i}x^i-\sum_{j=0}^k\binom{k}{j}x^j}{x}\\\
&=\frac{x(\sum_{i=0}^{n+1}\binom{n+1}{i}x^{i-1}-\sum_{j=0}^k\binom{k}{j}x^{j-1})}{x}\\\
&=\sum_{i=0}^{n+1}\binom{n+1}{i}x^{i-1}-\sum_{j=0}^k\binom{k}{j}x^{j-1}
\end{aligned}
$$
因为$j-1$不可能等于$k$,因此即为$\sum_{i=0}^{n+1}\binom{n+1}{i}x^{i-1}$的$k$次项的系数,$i-1=k$时,二项式系数为$\binom{n+1}{k+1}$
(也可以把$\binom{k}{k}$看成$\binom{k+1}{k+1}$归纳递推)
tql !$LaTeX$好漂亮 看起来太舒服了
# tql
# 大佬nb
%%%%
!%%%%%抽风