二分图:图中点通过移动能分成左右两部分,左侧的点只和右侧的点相连,右侧的点只和左侧的点相连。
染色法
看成树,一层0一层1,如果不符合不是二分图
1. 对每个点进行染色
2. 枚举该点的所有出边到达的点,染上不一样的颜色
3. 如果存在奇数环,就不存在二分图
dfs版本
代码思路:
染色可以使用1和2区分不同颜色,用0表示未染色
遍历所有点,每次将未染色的点进行dfs, 默认染成1或者2
由于某个点染色成功不代表整个图就是二分图,因此只有某个点染色失败才能立刻break/return
染色失败相当于至少存在2个点染了相同的颜色
染色法判别二分图 —— 模板题 AcWing 860. 染色法判定二分图
时间复杂度是 O(n+m), n 表示点数,m 表示边数
int n; // n表示点数
int h[N], e[M], ne[M], idx; // 邻接表存储图
int color[N]; // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色
// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
color[u] = c;
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (color[j] == -1)
{
if (!dfs(j, !c)) return false;
}
else if (color[j] == c) return false;
}
return true;
}
bool check()
{
memset(color, -1, sizeof color);
bool flag = true;
for (int i = 1; i <= n; i ++ )
if (color[i] == -1)
if (!dfs(i, 0))
{
flag = false;
break;
}
return flag;
}
题目描述
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。
请你判断这个图是否是二分图。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。
输出格式
如果给定图是二分图,则输出 Yes,否则输出 No。
数据范围
1≤n,m≤105
样例
4 4
1 3
1 4
2 3
2 4
输出
Yes
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010 * 2;
int e[N], ne[N], idx;//邻接表存储图
int h[N];
int color[N];//保存各个点的颜色,-1未染色,1 是红色,2 是黑色
int n, m;//点和边
void add(int a, int b)//邻接表插入点和边
{
e[idx] = b, ne[idx]= h[a], h[a] = idx++;
}
bool dfs(int u, int c)//深度优先遍历
{
color[u] = c;//u的点成 c 染色
//遍历和 u 相邻的点
for(int i = h[u]; i!= -1; i = ne[i])
{
int b = e[i];
if(color[b]==-1)//相邻的点没有颜色,则递归处理这个相邻点
{
if(!dfs(b, 3 - c)) return false;//(3 - 1 = 2, 如果 u 的颜色是2,则和 u 相邻的染成 1)
//(3 - 2 = 1, 如果 u 的颜色是1,则和 u 相邻的染成 2)
}
else if( color[b] == c)//如果已经染色,判断颜色是否为 3 - c
{
return false;//如果不是,说明冲突,返回
}
}
return true;
}
int main()
{
memset(h, -1, sizeof h);//初始化邻接表
cin >> n >> m;
for(int i = 1; i <= m; i++)//读入边
{
int a, b;
cin >> a >> b;
add(a, b), add(b, a);
}
memset(color, -1, sizeof color);
for(int i = 1; i <= n; i++)//遍历点
{
if(color[i]==-1)//如果没染色
{
if(!dfs(i, 1))//染色该点,并递归处理和它相邻的点
{
cout << "No" << endl;//出现矛盾,输出NO
return 0;
}
}
}
cout << "Yes" << endl;//全部染色完成,没有矛盾,输出YES
return 0;
}
匈牙利算法(求最大匹配)
思路
如果你想找的妹子已经有了男朋友,
你就去问问她男朋友,
你有没有备胎,
把这个让给我好吧
匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配
时间复杂度是 O(nm), n 表示点数,m 表示边数
int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过
bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true;
if (match[j] == 0 || find(match[j]))
{
match[j] = x;
return true;
}
}
}
return false;
}
// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
memset(st, false, sizeof st);
if (find(i)) res ++ ;
}
题目描述
给定一个二分图,其中左半部包含 n1 个点(编号 1∼n1),右半部包含 n2 个点(编号 1∼n2),二分图共包含 m 条边。
数据保证任意一条边的两个端点都不可能在同一部分中。
请你求出二分图的最大匹配数。
二分图的匹配:给定一个二分图 G,在 G 的一个子图 M 中,M 的边集 {E} 中的任意两条边都不依附于同一个顶点,则称 M 是一个匹配。
二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。
输入格式
第一行包含三个整数 n1、 n2 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。
输出格式
输出一个整数,表示二分图的最大匹配数。
数据范围
1≤n1,n2≤500,
1≤u≤n1,
1≤v≤n2,
1≤m≤105
样例
输入样例:
2 2 4
1 1
1 2
2 1
2 2
输出样例:
2
#include<bits/stdc++.h>
using namespace std;
const int N = 510, M = 100010;
int n1,n2,m;
int h[N],e[M],ne[M],idx;
int match[N];
bool st[N];
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
bool find(int x)
{
//枚举这个男生看上的全部女生
for(int i=h[x];i!=-1;i=ne[i])
{
int j=e[i];
//这个女生没有男生考虑
if(!st[j])
{
//表示这个女生已经考虑过
st[j]=true;
//如果这个女生没有男生匹配或者这个女生的男朋友可以找到备胎
if(match[j]==0||find(match[j]))
{
match[j]=x;
return true;
}
}
}
return false;
}
int main()
{
cin>>n1>>n2>>m;
memset(h,-1,sizeof h);
//建立邻接表
while(m--)
{
int a,b;
cin>>a>>b;
add(a,b);
}
//表示匹配数
int res=0;
//枚举每一个男生
for(int i=1;i<=n1;i++)
{
//把女生全部考虑一遍
memset(st,0,sizeof st);
if(find(i)==true) res++;
}
cout<<res<<endl;
return 0;
}