spfa判断负环
判断负环的时候都放进去,不一定从那个点开始,五个点有四条边--当边数>=n的时候一定有负环。
spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N]; // 存储每个点是否在队列中
// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
// 不需要初始化dist数组
// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。
queue<int> q;
for (int i = 1; i <= n; i ++ )
{
q.push(i);
st[i] = true;
}
while (q.size())
{
auto t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
if (!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
return false;
}
floyd算法
floyd算法 —— 模板题 AcWing 854. Floyd求最短路
时间复杂度是 O(n3), n 表示点数
初始化:
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;
else d[i][j] = INF;
// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
题目描述
题目描述
给定一个 nn 个点的有向图,请求出图中是否存在从顶点 11 出发能到达的负环。
负环的定义是:一条边权之和为负数的回路。
输入格式
本题单测试点有多组测试数据。
输入的第一行是一个整数 TT,表示测试数据的组数。对于每组数据的格式如下:
第一行有两个整数,分别表示图的点数 nn 和接下来给出边信息的条数 mm。
接下来 mm 行,每行三个整数 u, v, w。
若 w \geq 0w≥0,则表示存在一条从 u 至 vv边权为 ww的边,还存在一条从 v 至 u 边权为 w 的边。
若 w < 0w<0,则只表示存在一条从 u 至 vv 边权为 w 的边。
输出格式
对于每组数据,输出一行一个字符串,若所求负环存在,则输出 YES,否则输出 NO。
样例
输入:
2
3 4
1 2 2
1 3 4
2 3 1
3 1 -3
3 3
1 2 3
2 3 4
3 1 -8
输出
NO
YES
#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
int n, m;
int h[N], e[N], ne[N], idx;
int w[N];
int dist[N], cnt[N];//记录每个点到起点的边数,当cnt[i] >= n 表示出现了边数>=结点数
//,必然有环,而且一定是负环!
bool st[N];//判断当前的点是否已经加入到队列当中了;
//意味着,st数组起着提高效率的作用,不在乎效率的话,去掉也可以
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int spfa()
{
//初始化所有非起点和起点的距离
// memset(dist, 0x3f, sizeof dist);
// dist[1] = 0;
// 这里不需要初始化dist数组为 正无穷。不用初始化的原因是,如果存在负环那么dist不管初始化为多少都会被更新
//定义队列,起点进队, 标记进队
queue<int> q;
for (int i = 1; i <= n; i ++ )
{
//判断负环,只从一个点出发,有可能到达不了负环那里
q.push(i);//需要一开始就把所有结点放入队列,且标记进入了队列降低效率
st[i] = true;
}
//队列中的点用来更新其他点到起点的距离
while (q.size())
{
//取队头,弹队头
auto t = q.front();
q.pop();
//t出队,标记出队
st[t] = false;
//更新与t邻接的边
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];//结点j可以通过中间点t降低距离
cnt[j] = cnt[t] + 1;//那么结点j在中间点t的基础上加一条到自己的边
if (cnt[j] >= n) return true;//边数不小于结点数,出现负环,函数结束
if (!st[j])//若此时j没在队列中,则进队。已经在队列中了,上面已经更新了数值。重复加入队列降低效率
{
//j进队,标记进队
q.push(j);
st[j] = true;
}
}
}
}
return false;//走到这了,函数还没结束,意味着边数一直小于结点数,不存在负环
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 0; i < m; i ++ )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
if (spfa()) puts("Yes");
else puts("No");
return 0;
}
floyd算法
floyd算法 —— 模板题 AcWing 854. Floyd求最短路
时间复杂度是 O(n3), n 表示点数
初始化:
d[N][N]代表距离
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;
else d[i][j] = INF;
或者
memset(d,INF,sizeof d);
for(int i=1;i<=n;i++)d[i][i]=0;
// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。
数据保证图中不存在负权回路。
输入格式
第一行包含三个整数n,m,k
接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
接下来k行,每行包含两个整数x,y,表示询问点x到点y的最短距离。
输出格式
共k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出“impossible”。
数据范围
1≤n≤200,
1≤k≤n^2
1≤m≤20000,
图中涉及边长绝对值均不超过10000。
输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
#include<bits/stdc++.h>
using namespace std;
const int N = 210, INF = 0x3f3f3f3f;
int n,m,q;
int d[N][N];//距离
void floyd()
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
int main()
{
cin>>n>>m>>q;
memset(d,0x3f,sizeof d);//初始化d数组
for(int i=1;i<=n;i++) d[i][i]=0;//防止自环,取最小数0,
while(m--) //邻接矩阵,取权值较小的边
{
int a,b,c;
cin>>a>>b>>c;
d[a][b]=min(d[a][b],c);
}
floyd();
while(q--)
{
int a,b;
cin>>a>>b;
if(d[a][b]>INF/2) cout<<"impossible"<<endl;
else cout<<d[a][b]<<endl;
}
return 0;
}