给你一棵树,根是 1,若干次询问,每次给定三个集合 A,B,C,各取出三个点 x,y,z 使得 x可达z,y可达z,问你有多少满足条件的 z 使得集合 A,B 中的某些点能同时走到 z 。
1≤T≤20,1≤∑n,∑q≤2×105, ∑|A|+∑|B|+∑|C|≤2×105
考虑树链剖分。
由于输入是依次读入 A,B,C,我们先把集合 A,B 中各个点到根节点的那条链标上记号。然后把 C 中各个点的子树标上号。答案就是同时有三个记号的点的数量。
唯一的难点在标记的写法。我用 array<int, 3>
中的值分别表示三个标记。每次区间被更新之后,看一下是不是三个标记都有,有的话说明这个区间里的点都是答案,更新 sum。
最后查询整棵树的 sum。
#define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "/Users/aaron/Documents/template/debug.hpp"
#else
#define debug(...) 42
#endif
template <typename T>
class graph {
public:
struct edge {
int from;
int to;
T cost;
};
vector<edge> edges;
vector<vector<int>> g;
int n;
graph(int _n) : n(_n) {
g.resize(n);
}
virtual int add(int from, int to, T cost) = 0;
};
template <typename T>
class forest : public graph<T> {
public:
using graph<T>::edges;
using graph<T>::g;
using graph<T>::n;
forest(int _n) : graph<T>(_n) {
}
int add(int from, int to, T cost = 1) {
assert(0 <= from && from < n && 0 <= to && to < n);
int id = (int) edges.size();
assert(id < n - 1);
g[from].push_back(id);
// g[to].push_back(id);
edges.push_back({from, to, cost});
return id;
}
};
template <typename T>
class dfs_forest : public forest<T> {
public:
using forest<T>::edges;
using forest<T>::g;
using forest<T>::n;
vector<int> pv;
vector<int> pe;
vector<int> order;
vector<int> pos;
vector<int> end;
vector<int> sz;
vector<int> root;
vector<int> depth;
vector<T> dist;
dfs_forest(int _n) : forest<T>(_n) {
}
void init() {
pv = vector<int>(n, -1);
pe = vector<int>(n, -1);
order.clear();
pos = vector<int>(n, -1);
end = vector<int>(n, -1);
sz = vector<int>(n, 0);
root = vector<int>(n, -1);
depth = vector<int>(n, -1);
dist = vector<T>(n);
}
void clear() {
pv.clear();
pe.clear();
order.clear();
pos.clear();
end.clear();
sz.clear();
root.clear();
depth.clear();
dist.clear();
}
private:
void do_dfs(int v) {
pos[v] = (int) order.size();
order.push_back(v);
sz[v] = 1;
for (int id : g[v]) {
if (id == pe[v]) {
continue;
}
auto &e = edges[id];
int to = e.from ^ e.to ^ v;
depth[to] = depth[v] + 1;
dist[to] = dist[v] + e.cost;
pv[to] = v;
pe[to] = id;
root[to] = (root[v] != -1 ? root[v] : to);
do_dfs(to);
sz[v] += sz[to];
}
end[v] = (int) order.size() - 1;
}
void do_dfs_from(int v) {
depth[v] = 0;
dist[v] = T{};
root[v] = v;
pv[v] = pe[v] = -1;
do_dfs(v);
}
public:
void dfs(int v, bool clear_order = true) {
if (pv.empty()) {
init();
} else {
if (clear_order) {
order.clear();
}
}
do_dfs_from(v);
}
void dfs_all() {
init();
for (int v = 0; v < n; v++) {
if (depth[v] == -1) {
do_dfs_from(v);
}
}
assert((int) order.size() == n);
}
};
template <typename T>
class lca_forest : public dfs_forest<T> {
public:
using dfs_forest<T>::edges;
using dfs_forest<T>::g;
using dfs_forest<T>::n;
using dfs_forest<T>::pv;
using dfs_forest<T>::pos;
using dfs_forest<T>::end;
using dfs_forest<T>::depth;
int h;
vector<vector<int>> pr;
lca_forest(int _n) : dfs_forest<T>(_n) {
}
inline void build_lca() {
assert(!pv.empty());
int max_depth = 0;
for (int i = 0; i < n; i++) {
max_depth = max(max_depth, depth[i]);
}
h = 1;
while ((1 << h) <= max_depth) {
h++;
}
pr.resize(n);
for (int i = 0; i < n; i++) {
pr[i].resize(h);
pr[i][0] = pv[i];
}
for (int j = 1; j < h; j++) {
for (int i = 0; i < n; i++) {
pr[i][j] = (pr[i][j - 1] == -1 ? -1 : pr[pr[i][j - 1]][j - 1]);
}
}
}
inline bool anc(int x, int y) {
return (pos[x] <= pos[y] && end[y] <= end[x]);
}
inline int go_up(int x, int up) {
assert(!pr.empty());
up = min(up, (1 << h) - 1);
for (int j = h - 1; j >= 0; j--) {
if (up & (1 << j)) {
x = pr[x][j];
if (x == -1) {
break;
}
}
}
return x;
}
inline int lca(int x, int y) {
assert(!pr.empty());
if (anc(x, y)) {
return x;
}
if (anc(y, x)) {
return y;
}
for (int j = h - 1; j >= 0; j--) {
if (pr[x][j] != -1 && !anc(pr[x][j], y)) {
x = pr[x][j];
}
}
return pr[x][0];
}
};
template <typename T>
class hld_forest : public lca_forest<T> {
public:
using lca_forest<T>::edges;
using lca_forest<T>::g;
using lca_forest<T>::n;
using lca_forest<T>::pv;
using lca_forest<T>::sz;
using lca_forest<T>::pos;
using lca_forest<T>::order;
using lca_forest<T>::depth;
using lca_forest<T>::dfs;
using lca_forest<T>::dfs_all;
using lca_forest<T>::lca;
using lca_forest<T>::build_lca;
vector<int> head;
vector<int> visited;
hld_forest(int _n) : lca_forest<T>(_n) {
visited.resize(n);
}
void build_hld(const vector<int> &vs) {
for (int tries = 0; tries < 2; tries++) {
if (vs.empty()) {
dfs_all();
} else {
order.clear();
for (int v : vs) {
// assert(depth[v] == -1); careful..
dfs(v, false);
}
assert((int) order.size() == n);
}
if (tries == 1) {
break;
}
for (int i = 0; i < n; i++) {
if (g[i].empty()) {
continue;
}
int best = -1, bid = 0;
for (int j = 0; j < (int) g[i].size(); j++) {
int id = g[i][j];
int v = edges[id].from ^ edges[id].to ^ i;
if (pv[v] != i) {
continue;
}
if (sz[v] > best) {
best = sz[v];
bid = j;
}
}
swap(g[i][0], g[i][bid]);
}
}
build_lca();
head.resize(n);
for (int i = 0; i < n; i++) {
head[i] = i;
}
for (int i = 0; i < n - 1; i++) {
int x = order[i];
int y = order[i + 1];
if (pv[y] == x) {
head[y] = head[x];
}
}
}
void build_hld(int v) {
build_hld(vector<int>(1, v));
}
void build_hld_all() {
build_hld(vector<int>());
}
/*
vector<pair<int, int>> get_path(int x, int y) {
vector< pair<int, int> > path[2];
int z = lca(x, y);
for (int id = 0; id < 2; id++) {
int v = (id == 0 ? x : y);
while (v != z) {
if (depth[head[v]] <= depth[z]) {
path[id].emplace_back(pos[z] + 1, pos[v]);
break;
}
path[id].emplace_back(pos[head[v]], pos[v]);
v = pv[head[v]];
}
}
vector<pair<int, int>> ret;
for (int i = 0; i < (int) path[0].size(); i++) {
ret.emplace_back(path[0][i].second, path[0][i].first);
}
ret.emplace_back(-1, pos[z]);
for (int i = (int) path[1].size() - 1; i >= 0; i--) {
ret.push_back(path[1][i]);
}
return ret;
// returns segments of the path:
// first from x to lca, reversed segments
// then (-1, pos[lca])
// then from lca to y, direct segments
// but in most cases, apply_on_path should be enough
}
*/
bool apply_on_path(int x, int y, bool with_lca, function<void(int,int,bool)> f) {
// f(x, y, up): up -- whether this part of the path goes up
assert(!head.empty());
int z = lca(x, y);
if (z == -1) {
return false;
}
{
int v = x;
while (v != z) {
if (depth[head[v]] <= depth[z]) {
f(pos[z] + 1, pos[v], true);
break;
}
f(pos[head[v]], pos[v], true);
v = pv[head[v]];
}
}
if (with_lca) {
f(pos[z], pos[z], false);
}
{
int v = y;
int cnt_visited = 0;
while (v != z) {
if (depth[head[v]] <= depth[z]) {
f(pos[z] + 1, pos[v], false);
break;
}
visited[cnt_visited++] = v;
v = pv[head[v]];
}
for (int at = cnt_visited - 1; at >= 0; at--) {
v = visited[at];
f(pos[head[v]], pos[v], false);
}
}
return true;
}
};
array<int, 3> none = {{0, 0, 0}};
class segtree {
public:
struct node {
array<int, 3> put = none;
int sum = 0;
void apply(int l, int r, array<int, 3> arr) {
if (arr[0] + arr[1] + arr[2] == 0) {
put = none;
sum = 0;
return;
}
for (int i = 0; i < 3; i++) {
put[i] |= arr[i];
}
if (put[0] + put[1] + put[2] == 3) {
sum = (r - l + 1);
}
}
};
node unite(const node &a, const node &b) const {
node res;
res.sum = a.sum + b.sum;
return res;
}
inline void push(int x, int l, int r) {
int y = (l + r) >> 1;
int z = x + ((y - l + 1) << 1);
int sum = tree[x].put[0] + tree[x].put[1] + tree[x].put[2];
if (sum != 0) {
tree[x + 1].apply(l, y, tree[x].put);
tree[z].apply(y + 1, r, tree[x].put);
tree[x].put = none;
}
}
inline void pull(int x, int z) {
tree[x] = unite(tree[x + 1], tree[z]);
}
int n;
vector<node> tree;
void build(int x, int l, int r) {
if (l == r) {
return;
}
int y = (l + r) >> 1;
int z = x + ((y - l + 1) << 1);
build(x + 1, l, y);
build(z, y + 1, r);
pull(x, z);
}
template <typename M>
void build(int x, int l, int r, const vector<M> &v) {
if (l == r) {
tree[x].apply(l, r, v[l]);
return;
}
int y = (l + r) >> 1;
int z = x + ((y - l + 1) << 1);
build(x + 1, l, y, v);
build(z, y + 1, r, v);
pull(x, z);
}
node get(int x, int l, int r, int ll, int rr) {
if (ll <= l && r <= rr) {
return tree[x];
}
int y = (l + r) >> 1;
int z = x + ((y - l + 1) << 1);
push(x, l, r);
node res{};
if (rr <= y) {
res = get(x + 1, l, y, ll, rr);
} else {
if (ll > y) {
res = get(z, y + 1, r, ll, rr);
} else {
res = unite(get(x + 1, l, y, ll, rr), get(z, y + 1, r, ll, rr));
}
}
pull(x, z);
return res;
}
template <typename... M>
void modify(int x, int l, int r, int ll, int rr, const array<int, 3>& v) {
if (ll <= l && r <= rr) {
tree[x].apply(l, r, v);
return;
}
int y = (l + r) >> 1;
int z = x + ((y - l + 1) << 1);
push(x, l, r);
if (ll <= y) {
modify(x + 1, l, y, ll, rr, v);
}
if (rr > y) {
modify(z, y + 1, r, ll, rr, v);
}
pull(x, z);
}
int find_first_knowingly(int x, int l, int r, const function<bool(const node&)> &f) {
if (l == r) {
return l;
}
push(x, l, r);
int y = (l + r) >> 1;
int z = x + ((y - l + 1) << 1);
int res;
if (f(tree[x + 1])) {
res = find_first_knowingly(x + 1, l, y, f);
} else {
res = find_first_knowingly(z, y + 1, r, f);
}
pull(x, z);
return res;
}
int find_first(int x, int l, int r, int ll, int rr, const function<bool(const node&)> &f) {
if (ll <= l && r <= rr) {
if (!f(tree[x])) {
return -1;
}
return find_first_knowingly(x, l, r, f);
}
push(x, l, r);
int y = (l + r) >> 1;
int z = x + ((y - l + 1) << 1);
int res = -1;
if (ll <= y) {
res = find_first(x + 1, l, y, ll, rr, f);
}
if (rr > y && res == -1) {
res = find_first(z, y + 1, r, ll, rr, f);
}
pull(x, z);
return res;
}
int find_last_knowingly(int x, int l, int r, const function<bool(const node&)> &f) {
if (l == r) {
return l;
}
push(x, l, r);
int y = (l + r) >> 1;
int z = x + ((y - l + 1) << 1);
int res;
if (f(tree[z])) {
res = find_last_knowingly(z, y + 1, r, f);
} else {
res = find_last_knowingly(x + 1, l, y, f);
}
pull(x, z);
return res;
}
int find_last(int x, int l, int r, int ll, int rr, const function<bool(const node&)> &f) {
if (ll <= l && r <= rr) {
if (!f(tree[x])) {
return -1;
}
return find_last_knowingly(x, l, r, f);
}
push(x, l, r);
int y = (l + r) >> 1;
int z = x + ((y - l + 1) << 1);
int res = -1;
if (rr > y) {
res = find_last(z, y + 1, r, ll, rr, f);
}
if (ll <= y && res == -1) {
res = find_last(x + 1, l, y, ll, rr, f);
}
pull(x, z);
return res;
}
segtree(int _n) : n(_n) {
assert(n > 0);
tree.resize(2 * n - 1);
build(0, 0, n - 1);
}
template <typename M>
segtree(const vector<M> &v) {
n = v.size();
assert(n > 0);
tree.resize(2 * n - 1);
build(0, 0, n - 1, v);
}
node get(int ll, int rr) {
assert(0 <= ll && ll <= rr && rr <= n - 1);
return get(0, 0, n - 1, ll, rr);
}
node get(int p) {
assert(0 <= p && p <= n - 1);
return get(0, 0, n - 1, p, p);
}
template <typename... M>
void modify(int ll, int rr, const array<int, 3>& v) {
// assert(0 <= ll && ll <= rr && rr <= n - 1);
if (!(0 <= ll && ll <= rr && rr <= n - 1)) {
swap(ll, rr);
debug(ll, rr, 0, n - 1, v);
// exit(0);
}
modify(0, 0, n - 1, ll, rr, v);
}
// find_first and find_last call all FALSE elements
// to the left (right) of the sought position exactly once
int find_first(int ll, int rr, const function<bool(const node&)> &f) {
assert(0 <= ll && ll <= rr && rr <= n - 1);
return find_first(0, 0, n - 1, ll, rr, f);
}
int find_last(int ll, int rr, const function<bool(const node&)> &f) {
assert(0 <= ll && ll <= rr && rr <= n - 1);
return find_last(0, 0, n - 1, ll, rr, f);
}
};
array<int, 3> A = {{1, 0, 0}};
array<int, 3> B = {{0, 1, 0}};
array<int, 3> C = {{0, 0, 1}};
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int tt;
cin >> tt;
while (tt--) {
int n, q;
cin >> n >> q;
hld_forest<int> g(n);
for (int i = 1; i < n; i++) {
int p;
scanf("%d", &p);
--p;
g.add(p, i);
}
g.dfs(0);
g.build_hld(0);
segtree st(n);
while (q--) {
for (int i = 0; i < n; i++) {
st.modify(g.pos[i], g.pos[i], none);
}
int sa, sb, sc;
cin >> sa >> sb >> sc;
while (sa--) {
int v;
cin >> v;
v--;
g.apply_on_path(0, v, true, [&](int from, int to, bool) {
st.modify(from, to, A);
});
}
while (sb--) {
int v;
cin >> v;
v--;
g.apply_on_path(0, v, true, [&](int from, int to, bool) {
st.modify(from, to, B);
});
}
while (sc--) {
int v;
cin >> v;
v--;
st.modify(g.pos[v], g.pos[v] + g.sz[v] - 1, C);
}
for (int i = 0; i < st.n; i++) {
auto nd = st.get(i);
}
cout << st.get(0, n - 1).sum << '\n';
}
}
return 0;
}