模板:
#include<bits/stdc++.h>
using namespace std;
const int N = 300010;
const double PI = acos(-1);
int n, m;
struct Complex
{
double x, y;
Complex operator+ (const Complex& t) const
{
return {x + t.x, y + t.y};
}
Complex operator- (const Complex& t) const
{
return {x - t.x, y - t.y};
}
Complex operator* (const Complex& t) const
{
return {x * t.x - y * t.y, x * t.y + y * t.x};
}
}a[N], b[N];
int rev[N], bit, tot;
void fft(Complex a[], int inv)
{
for (int i = 0; i < tot; i ++ )
if (i < rev[i])
swap(a[i], a[rev[i]]);
for (int mid = 1; mid < tot; mid <<= 1)
{
auto w1 = Complex({cos(PI / mid), inv * sin(PI / mid)});
for (int i = 0; i < tot; i += mid * 2)
{
auto wk = Complex({1, 0});
for (int j = 0; j < mid; j ++, wk = wk * w1)
{
auto x = a[i + j], y = wk * a[i + j + mid];
a[i + j] = x + y, a[i + j + mid] = x - y;
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 0; i <= n; i ++ ) scanf("%lf", &a[i].x);
for (int i = 0; i <= m; i ++ ) scanf("%lf", &b[i].x);
while ((1 << bit) < n + m + 1) bit ++;
tot = 1 << bit;
for (int i = 0; i < tot; i ++ )
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
fft(a, 1), fft(b, 1);
for (int i = 0; i < tot; i ++ ) a[i] = a[i] * b[i];
fft(a, -1);
for (int i = 0; i <= n + m; i ++ )
printf("%d ", (int)(a[i].x / tot + 0.5));
return 0;
}
题目:
P3338
首先发现可以去掉qi
fft的第一步是推出卷积式子,推导过程略
在这个题有一个技巧就是反转某个多项式变成卷积的形式
#include<bits/stdc++.h>
using namespace std;
const int N = 300010;
const double PI = acos(-1);
int n, m;
struct Complex
{
double x, y;
Complex operator+ (const Complex& t) const
{
return {x + t.x, y + t.y};
}
Complex operator- (const Complex& t) const
{
return {x - t.x, y - t.y};
}
Complex operator* (const Complex& t) const
{
return {x * t.x - y * t.y, x * t.y + y * t.x};
}
}a[N], b[N],c[N];
int rev[N], bit, tot;
void fft(Complex a[], int inv)
{
for (int i = 0; i < tot; i ++ )
if (i < rev[i])
swap(a[i], a[rev[i]]);
for (int mid = 1; mid < tot; mid <<= 1)
{
auto w1 = Complex({cos(PI / mid), inv * sin(PI / mid)});
for (int i = 0; i < tot; i += mid * 2)
{
auto wk = Complex({1, 0});
for (int j = 0; j < mid; j ++, wk = wk * w1)
{
auto x = a[i + j], y = wk * a[i + j + mid];
a[i + j] = x + y, a[i + j + mid] = x - y;
}
}
}
}
int main()
{
scanf("%d",&n);
for (int i = 1; i <= n; i ++ )
{
scanf("%lf", &a[i].x);
c[n-i].x=a[i].x;
b[i].x=double(1.0/i/i);
}
while ((1 << bit) < n*2+1) bit ++;
tot = 1 << bit;
for (int i = 0; i < tot; i ++ )
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
fft(a, 1), fft(b, 1),fft(c,1);
for (int i = 0; i < tot; i ++ ) a[i] = a[i] * b[i],c[i]=c[i]*b[i];
fft(a, -1),fft(c,-1);
for (int i = 1; i <= n; i ++ )
printf("%lf\n", (a[i].x-c[n-i].x)/tot);
return 0;
}
# O r z