朴素版dijkstra问题
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 220;
int g[N][N], dist[N];
bool st[N];
int n, m;
int dijkstra() // 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for(int i = 0; i < n; i ++ )
{
int t = -1;
for(int j = 1; j <= n; j ++ )
if(!st[j] && (t == -1 || dist[t] > dist[j])) t = j;
st[t] = true;
for(int j = 1; j <= n; j ++ )
dist[j] = min(dist[j], dist[t] + g[t][j]);
}
if(dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
cin >> n >> m;
memset(g, 0x3f, sizeof g);
while (m -- )
{
int a, b, c;
cin >> a >> b >> c;
g[a][b] = min(g[a][b], c);
}
int t = dijkstra();
cout << t << endl;
return 0;
}
堆优化版dijkstra算法
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 1e6 + 10;
int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1});
while (heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[ver] + w[i])
{
dist[j] = dist[ver] + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
cout << dijkstra() << endl;
return 0;
}
bellman_ford算法
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 510, M = 10010;
int dist[N], backup[N];
int n, m, k;
struct Edge
{
int a, b, w;
}edges[M];
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for(int i = 0; i < k; i ++ )
{
memcpy(backup, dist, sizeof dist);
for(int j = 0; j < m; j ++ )
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
dist[b] = min(dist[b], backup[a] + w);
}
}
if(dist[n] == 0x3f3f3f3f / 2) return -1;
return dist[n];
}
int main()
{
cin >> n >> m >> k;
for(int i = 0; i < m; i ++ )
{
int a, b , w;
cin >> a >> b >> w;
edges[i] = {a, b, w};
}
int t = bellman_ford();
if(t == -1) cout << "NO" << endl;
cout << t << endl;
return 0;
}
spfa算法
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 220;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];
int n, m;
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int spfa()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = true;
while(q.size())
{
auto t = q.front();
q.pop();
st[t] = false;
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if(dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if(!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
if(dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);
while(m -- )
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
int t = spfa();
if(t == -1) puts("impossible");
else cout << t << endl;
return 0;
}
spfa算法判断是否存在负环
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 220;
int h[N], w[N], e[N], ne[N], idx;
int dist[N], cnt[N];
bool st[N];
int n, m, k;
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int spfa()
{
queue<int> q;
for(int i = 1; i <= n; i ++ )
{
st[i] = true;
q.push(i);
}
while(q.size())
{
auto t = q.front();
q.pop();
st[t] = false;
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if(dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if(cnt[j] >= n) return true;
if(!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
return false;
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);
while (m -- )
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
if(spfa()) cout << "YES" << endl;
else cout << "NO" << endl;
return 0;
}
floyd算法————多源汇最短路
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 220, INF = 1e9;
int d[N][N];
int n, m, Q;
void floyd()
{
for(int k = 1; k <= n; k ++ )
for(int i = 1; i <= n; i ++ )
for(int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
int main()
{
cin >> n >> m >> Q;
for(int i = 1; i <= n; i ++ )
for(int j = 1; j <= n; j ++ )
if(i == j) d[i][j] = 0; //如果存在环
else d[i][j] = INF;
while (m -- )
{
int a, b, w;
cin >> a >> b >> w;
d[a][b] = min(d[a][b], w);
}
floyd();
while(Q -- )
{
int x, y;
cin >> x >> y;
if(d[x][y] > INF / 2) puts("impossible");
else cout << d[x][y] << endl;
}
return 0;
}