斐波那契前 n 项和
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 3;
int n, m;
void mul(int c[], int a[], int b[][N])//一维等于一维乘以二维
{
int temp[N] = {0};//定义一个临时指针
for (int i = 0; i < N; i ++ )
for (int j = 0; j < N; j ++ )
temp[i] = (temp[i] + (LL)a[j] * b[j][i]) % m;
memcpy(c, temp, sizeof temp);
}
void mul(int c[][N], int a[][N], int b[][N])//矩阵乘法,二维 = 二维乘以二维
{
int temp[N][N] = {0};
for (int i = 0; i < N; i ++ )
for (int j = 0; j < N; j ++ )
for (int k = 0; k < N; k ++ )
temp[i][j] = (temp[i][j] + (LL)a[i][k] * b[k][j]) % m;
memcpy(c, temp, sizeof temp);
}
int main()
{
cin >> n >> m;
int f1[N] = {1, 1, 1};
int a[N][N] = {、、出事矩阵
{0, 1, 0},
{1, 1, 1},
{0, 0, 1}
};
n -- ;
while (n)//快速幂,矩阵A^(n-1)
{
if (n & 1) mul(f1, f1, a); // res = res * a
mul(a, a, a); // a = a * a
n >>= 1;
}
cout << f1[2] << endl;
return 0;
}